

Developer Guide for Read-a-Card

Read-a-Card software from v3.3.0

Revised April 2019 v1.02

If you need help to set up or use Read-a-Card, beyond what is contained in this Developer Guide and
the User Guide, then please contact our support team.

Before you get in touch it would be helpful if you could check which version of Read-a-Card you are
using. You will find this on the About tab.

Website: https://readacard.com/support

Email: support@read-a-card.com

Telephone UK and Europe: +44 (0) 1428 685861

Telephone North America and Latin America: +1 888-262-9642 or +1 565-262-9642

If you have any feedback on setting up or using Read-a-Card software or this documentation, then
please contact our support team. The product is constantly being reviewed and improved and we
value feedback about your experience.

Copyright 2019 Dot Origin Ltd. All rights reserved.

No part of this Developer Guide may be published or reproduced without the written permission of
Dot Origin Ltd except for personal use. This Developer Guide relates to correct use of the Read-a-Card
software only. No liability can be accepted under any circumstances relating to the operation of the
user’s own PC, network or infrastructure.

Dot Origin Ltd
Unit 7, Coopers Place Business Park, Combe Lane, Wormley
Godalming GU8 5SZ United Kingdom
+44 (0) 1428 685861

https://readacard.com/support
mailto:support@read-a-card.com

Contents

1 Introduction for Developers 1

1.1 Controlled by .ini file 1

1.2 Web server functionality 1

1.3 Messaging API 1

1.4 Intended use 1

2 Using the Read-a-Card web server 2

2.1 Web server example 2

3 Using the Read-a-Card Messaging API 3

3.1 Messaging API 3

3.2 Implementing messaging 3

3.3 Support using the messaging API 5

A Web page example A-1

DEVELOPER GUIDE FOR READ-A-CARD : CONTENTS PAGE I

DEVELOPER GUIDE FOR READ-A-CARD : INTRODUCTION FOR DEVELOPERS PAGE 1

1 Introduction for Developers

Read-a-Card has various features aimed at software developers, which hide the complexities of the
contactless card and reader communication layers so that unique RFID card IDs and other data can
be read easily, without prior knowledge of the technologies involved.

You can choose different approaches depending on your needs and experience. Read-a-Card will give
you compatibility with the widest range of readers and cards possible. This flexibility should make it
easy to integrate smart cards into your solution.

1.1 Controlled by .ini file

All settings available in the user interface, including the lock feature, can be enabled by directly
editing the Read-a-Card.ini configuration text file. In this way your own software can take
control of how Read-a-Card operates.

1.2 Web server functionality

A web site or application in the browser can receive the information that Read-a-Card has read from a
contactless card or tag, using the local web server functionality that runs on the client.

1.3 Messaging API

Read-a-Card includes a Windows messaging based API (application programming interface), allowing
other software applications to be developed that make use of Read-a-Card’s functionality.
Applications that register to receive Read-a-Card’s notification messages will receive the card ID, card
type, reader ID (where available) and timestamp, whenever a new card is presented.

1.4 Intended use

Read-a-Card is designed to be configured by an integrator or administrator using its tab-based user
interface, or by software changing the configuration files and settings directly. Read-a-Card is then
typically run in the background by an end-user, with limited user privileges, to avoid changes to
Read-a-Card configuration parameters in normal use. Configuration changes can also be prevented
by using a password.

This Developer guide will show you the facilities in Read-a-Card which you can use to integrate
card reading seamlessly into third-party applications.

It is assumed you are already familiar with the initial Read-a-Card set up, described in the separate
User guide.

2 Using the Read-a-Card web server

A web site or application in the browser can receive the information that Read-a-Card has read from a
contactless card or tag, using the local web server functionality that runs on the client. This is enabled
inside Read-a-Card on the Web Server tab.

The Read-a-Card built-in web server will then allow your web page, with the addition of some
Javascript, to read card information from the Read-a-Card user’s web browser. The page can then
send this information back to your server application. This allows end-users to submit online forms
that are automatically populated with the relevant information from a presented card.

For an example of how to add this ability to your web site, see the Web page example in the
Appendix. (This example code is available as a file called Card.htm installed with the Read-a-Card
application, usually in C:/Program Files (x86)/Read-a-Card.).

2.1 Web server example

When an end-user presents a card to a reader, with Read-a-Card set up in this way, a web page will be
populated with data from the presented card.

Steps to set this up in Read-a-Card:

 1. Card Type tab - change the default from
 All Cards, if you only want Read-a-Card to react

to certain card types.

 2. Reader Type tab - change the default from
 All supported PC/SC Contactless Card Readers

only if you want to restrict the readers to use.

 3. Action tab - optionally, select Play sound to

give confirmation a card has been read.

 4. Format tab - control how data should be read from the card.

 5. Web Server tab - choose Enable Read-a-Card web server on this computer and optionally alter

the port number from its default and set the domain name of the requesting page, or type * to
allow any page.

External to Read-a-Card you will need to set up your web page to make use of this card information.
The Web page example is useful as a starting point.

Versions of the Read-a-Card web server may also be available for Linux and Mac OSX. Please contact
support@read-a-card.com for more information.

DEVELOPER GUIDE FOR READ-A-CARD : USING THE READ-A-CARD WEB SERVER PAGE 2

mailto:support@read-a-card.com

DEVELOPER GUIDE FOR READ-A-CARD : USING THE MESSAGING API PAGE 3

3 Using the Read-a-Card Messaging API

If you are a Windows application developer introducing contactless card technology, you can
communicate directly with Read-a-Card through our Windows Messaging API. This is the cleanest
way to add Read-a-Card functionality to your software, by receiving Windows messages from
Read-a-Card that contain the information you need. You can also send messages back to Read-a-Card
to change the actions that it takes, depending on the status of your system.

3.1 Messaging API

To use the Read-a-Card messaging API, your application must register with Read-a-Card by sending a
custom Windows message to the Read-a-Card main window. That message provides Read-a-Card
with your application’s window handle.

Since your application will be assigned a different window handle each time it runs, your application
will need to send the register message to Read-a-Card whenever it or Read-a-Card is restarted.

When registered, Read-a-Card will notify your application whenever a card is presented. To do this,
Read-a-Card sends a WM_COPYDATA message to your application, using the window handle that
was provided in the registration step. The WM_COPYDATA message is a standard method of
transferring data in shared memory between two applications under Windows. The data transferred
in this message includes the card ID, card type, reader ID (where available) and timestamp, as 4
unicode character strings.

Ideally, when your application closes or no longer requires the Read-a-Card notification messages, it
should send an unregister message to Read-a-Card to stop the notification messages being sent.

3.2 Implementing messaging

This messaging scheme may be implemented using any Windows application development
environment that supports the Win32 API. Examples are provided, in Visual C++ using MFC and in
VB.NET, for download from https://readacard.com/support. The steps involved are described here in
more detail to allow other development environments to be used:

To register with Read-a-Card:

 1. Find the Read-a-Card window handle. This can be achieved using the win32api.FindWindow
function to look for a window with the title Read-a-Card.

 2. Create a custom message ID using the win32api.RegisterWindowMessage function
with READACARD as the argument.

 3. Use win32api.SendMessage to send a message to the Read-a-Card window. The message

https://readacard.com/support

ID should be the one created in step 2 and the LPARAM should be your application’s window
handle. The WPARAM is an 8 bit action mask that tells Read-a-Card what actions it should take
itself when a card is presented.

The following is the bitwise representation of the Action Mask:
X X X X X X X X

7 6 5 4 3 2 1 0

Bit Use Enable Disable

7 Not Used N/A N/A

6 Log Action 0 1

5 URL/HTTP Action 0 1

4 Command Action 0 1

3 Sound Action 0 1

2 Clipboard Action 0 1

1 Keyboard Action 0 1

0 Not used N/A N/A

For example, a WPARAM of integer value 1 will register with Read-a-Card and leave all functions
on, while a value of 3 will register with Read-a-Card and also turn off the keyboard action.

When registered, your application’s window handler will receive WM_COPYDATA messages from
Read-a-Card whenever a card is presented.

The lpData member of the received COPYDATASTRUCT object can be interpreted as a pointer to
a Read-a-Card structure, comprising 4 null-terminated unicode character arrays each having a
maximum length of 256 bytes.

The following shows the C++ structure for this data:

typedef struct {
 WCHAR cardID[256];
 WCHAR readerSerial[256];
 WCHAR cardType[256];
 WCHAR timeStamp[256];
} READ_A_CARD_DATA;

Depending on the development environment of your application, these character arrays may require
conversion to be displayed as string types. See the VB.NET sample code for an example of this type
of conversion.

DEVELOPER GUIDE FOR READ-A-CARD : USING THE MESSAGING API PAGE 4

DEVELOPER GUIDE FOR READ-A-CARD : USING THE MESSAGING API PAGE 5

3.3 Support using the messaging API

We include both the source code and executable versions of two example applications that
demonstrate the use of Read-a-Card via the Messaging API for download from
https://readacard.com/support. These have been built using standard Microsoft compilers, and
should provide enough information to guide you through creating your own integrated solution.

If you have any queries about these examples, or the API in general, please contact us by email using
the address support@read-a-card.com although we may not always be able to help with queries
about other languages or development environments.

https://readacard.com/support
mailto:support@read-a-card.com

A Web page example
This is an example web page to show what is required to communicate with the Read-a-Card web
server. You must enable the Read-a-Card web server from within the Read-a-Card software in order
for this to work. This example code is available as a file called Card.htm installed with the Read-a-
Card application, usually in C:/Program Files (x86)/Read-a-Card.

The Javascript code contained in this example page first opens an asynchronous connection with the
web server. It then polls the Read-a-Card web server located at the predefined URL and port (once a
second) with a GET message. If there is no change in status, the response will be NO CARD otherwise
the response message will be in the format: OK,<cardID>,<reader_serial>,<card_type>,<time_stamp>

This message can then be split to extract the required data elements.

In this example page, when a card is detected the card ID is inserted into the appropriate field in an
HTML form, and the continue button is enabled.

<HEAD>

<script language=Javascript>

var http = CreateHTTP();

var url = "http://localhost:21059/pollcard";

function CreateHTTP()
{

 var obj;

 if (window.XDomainRequest) {
 // IE8
 obj = new window.XDomainRequest();
 }
 else {
 // Everything else
 obj = new XMLHttpRequest();
 }
 return obj;

}

DEVELOPER GUIDE FOR READ-A-CARD : APPENDIX PAGE A-1

DEVELOPER GUIDE FOR READ-A-CARD : APPENDIX PAGE A-2

function Poll()
{
 /*Avoid browser caching problems by putting a random number on
 each request*/

 var randURL = url + "/" + Math.random();

 if (http) {
 if (window.XDomainRequest) {
 // IE8
 http.onload = EnterResult;
 http.open("GET", randURL, true);
 }
 else {
 http.open('GET', randURL, true);
 http.onreadystatechange = StateChangeHandler;
 }

 }

 http.send();
 setTimeout("Poll()", 1000);

}

function StateChangeHandler(evtXHR)
{
 if (http.readyState == 4) {
 if (http.status == 200) {
 EnterResult();
 }
 }

}

function EnterResult()
{
 /*document.getElementByID ("debug").innerHTML +=
 "
" + http.responseText;*/

 var values = http.responseText.split(",");

 if (values && values[0] == "OK") {
 // values[1] is the card ID
 if (values[1]) {
 /* Enter the value into the field, change the
 text and enable the OK button*/
 document.userform.cardID.value = values[1];
 Hide("promptforcard");
 Show("promptcardok");
 document.userform.okbutton.disabled = false;
 }
 }

}

function Hide(object) {
 // sub-function used to hide objects
 document.getElementById(object).style.display='none';

}

function Show(object) {
 // sub-function used to display objects
 document.getElementById(object).style.display='inline';

}

</script>

</HEAD>
<BODY onload="Poll();">
<H2>Enter user details</H2>

<FORM name=userform>

DEVELOPER GUIDE FOR READ-A-CARD : APPENDIX PAGE A-3

DEVELOPER GUIDE FOR READ-A-CARD : APPENDIX PAGE A-4

<TABLE>
<TR>
<TD>First name:</TD>
<TD><INPUT type=TEXT name=firstName value=></TD>
</TR>
<TR>
<TD>Last name:</TD>
<TD><INPUT type=TEXT name=lastName value=></TD>
</TR>
<TR>
<TD>Card ID:</TD>
<TD><INPUT type=TEXT name=cardID value=></TD>
</TR>

</TABLE>

<DIV id=promptforcard style="display:inline;">
<p>Present card to continue
</DIV>
<DIV id=promptcardok style="display:none;">
<p>Card details received
</DIV>

<INPUT type=SUBMIT name=okbutton value=Continue disabled=true>

</FORM>
<DIV id=debug>
</DIV></BODY>

	1 Introduction for Developers
	1.1 Controlled by .ini file
	1.2 Web server functionality
	1.3 Messaging API
	1.4 Intended use

	2 Using the Read‑a‑Card web server
	2.1 Web server example

	3 Using the Read‑a‑Card Messaging API
	3.1 Messaging API
	3.2 Implementing messaging
	3.3 Support using the messaging API

	A Web page example

