

Messaging API

Developer Guide

Contents

Introduction .. 2
Messaging Overview .. 2

Implementation Details ... 2
Configuring Read-a-Card ... 4
Technical Support .. 4

Page 2 Read-a-Card Messaging API ©2015-18 Dot Origin Ltd.

Introduction

Read-a-Card provides a Windows messaging based API (application programming
interface) allowing other software applications to be developed that make use of
Read-a-Card’s functionality. Applications that register to receive Read-a-Card’s
notification messages will receive the card ID, card type, reader ID (where available)
and timestamp, whenever a new card is presented.

Messaging Overview

To use the Read-a-Card messaging API, your application must register with Read-a-
Card by sending a custom Windows message to the Read-a-Card main window.
That message provides Read-a-Card with your application’s window handle.

Once registered, Read-a-Card will notify your application whenever a card is
presented. To do this, Read-a-Card sends a WM_COPYDATA message to your
application using the window handle that was provided in the registration step. The
WM_COPYDATA message is a standard method of transferring data in shared
memory between two applications under Windows. The data transferred via this
message contains the card ID, card type, reader ID (where available) and timestamp
as 4 unicode character strings.

Because your application will be assigned a different window handle each time it
runs, your application will need to send the register message to Read-a-Card
whenever it or Read-a-Card is restarted.

Ideally, when your application closes or no longer requires the Read-a-Card
notification messages, it should send an unregister message to Read-a-Card to stop
the notification messages being sent.

Implementation Details

This messaging scheme may be implemented using any Windows application
development environment that supports the Win32 API. Examples are provided in
Visual C++ using MFC and in VB.NET but the steps involved are described here in
more detail to allow other development environments to be used.

To register with Read-a-Card:

1. Find the Read-a-Card window handle. This can be achieved using the Win32
API FindWindow function to look for a window with the title “Read-a-Card”.

2. Create a custom message ID using the Win32 API RegisterWindowMessage
function with “READACARD” as the argument.

Page 3 Read-a-Card Messaging API ©2015-18 Dot Origin Ltd.

3. Use SendMessage to send a message to the Read-a-Card window. The
message ID should be that created in step 2 and the LPARAM should be your
application’s window handle. The WPARAM is an 8 bit action mask that tells
Read-a-Card what actions it should take itself when a card is presented. The
details for the mask format are as follows:

X X X X X X X X

 7 6 5 4 3 2 1 0

Bit 7 = Not Used

Bit 6 = Log Action Disabled 0 = On , 1 = Off

Bit 5 = URL Action 0 = On , 1 = Off

Bit 4 = Command Action 0 = On , 1 = Off

Bit 3 = Sound Action 0 = On , 1 = Off

Bit 2 = Clipboard Action 0 = On , 1 = Off

Bit 1 = Keyboard Action 0 = On , 1 = Off

Bit 0 = Successfully Registered 1 = On , 0 = Off

For example, a WPARAM of integer value 1 will register with Read-a-Card
and leave all functions on, while a value of 3 will register with Read-a-Card
and also turn off the keyboard action.

Once registered, your application’s window handler will receive WM_COPYDATA
messages from Read-a-Card whenever a card is presented. The lpData member of
the received COPYDATASTRUCT object can be interpreted as a pointer to a Read-
a-Card structure comprising 4 null-terminated unicode character arrays each having
a maximum length of 256 bytes.

The following shows the C++ structure for this data:

typedef struct {

 WCHAR cardID[256];

 WCHAR readerSerial[256];

 WCHAR cardType[256];

 WCHAR timeStamp[256];

} READ_A_CARD_DATA;

Page 4 Read-a-Card Messaging API ©2015-18 Dot Origin Ltd.

Depending on the development environment of your application, these character
arrays may require appropriate conversion to be displayed as string types. See the
VB.NET sample code for an example of this type of conversion.

Configuring Read-a-Card

Read-a-Card is designed to be configured by an administrator using its tab-based
user interface, and run under limited user privileges which prevents the user from
changing any configuration parameters. As an alternative, you can configure Read-
a-Card by directly writing the file ‘Read-a-Card.ini’ with the required settings.

On Windows 2000/XP this is located in the folder:

 c:\Documents and Settings\All Users\Application Data\Read-a-Card\

On Windows Vista, 7 and 8 this is located in the folder:

 c:\ProgramData\Read-a-Card\

Technical Support

We include both the source code and executable versions of two example
applications that demonstrate the use of Read-a-Card via the messaging API. These
have been built using standard Microsoft compilers, and should provide enough
information to guide you through creating your own integrated solution.

If you have any queries about these examples, or the API in general, please contact
us via email using the address info@read-a-card.com although we may not
necessarily be able to help with queries on other languages or development
environments.

mailto:info@read-a-card.com

	Introduction
	Messaging Overview
	Implementation Details
	Configuring Read-a-Card
	Technical Support

