

MIFARE Sector Decoder

Plug-in User Guide

Contents

Overview .. 2

Read-a-Card and plug-in DLLs .. 2
Plug-in configuration... 3

Plug-in name .. 3

Read sector data configuration ... 3
MIFARE access keys .. 6

Securing your access keys ... 6
Decoding facility codes and card numbers ... 6

DigitMask .. 7

BitMask ... 7
Fixed facility codes .. 9

Read-a-Card actions ... 9
Example configuration file .. 10

Page 2 of 10 MIFARE Decoder  2011-2018 Dot Origin Ltd

Overview
Read-a-Card plug-ins give you the ability to extend the application’s functionality to
meet your own custom needs. By default, Read-a-Card will read the CSN/UID of a
contactless MIFARE card. But if instead you wish to read, for example, a specific
sector of a MIFARE card, then Read-a-Card can return that data, formatted
according to your requirements, using a software plug-in. You can also optionally
store access keys securely in hardware.

The MIFARE Sector Decoder plug-in supports reading and decoding IDs stored in
sectors on MIFARE 1K, 4K, Ultralight, Ultralight C and NTAG203 card type families.

This document will guide you through the configuration and use of the Read-a-Card
MIFARE Sector Decoder plug-in.

Read-a-Card and plug-in DLLs
Read-a-Card supports plug-in extensions in the form of DLL files. These DLL files
must reside in the “Plugins” folder within the Read-a-Card application folder. (e.g.
C:\Program Files\Read-a-Card\Plugins).

The MIFARE Sector Decoder plug-in is included with recent versions of the Read-a-
Card (v3.0.7 onwards). The plug-in DLL (RACFormatDecodeA.dll) is copied to the
Plugins folder when Read-a-Card is installed.

Read-a-Card will display all available plug-ins in the Card ID source drop-down box
on the Format tab. All plug-ins will have the “Plug-in:” prefix. Only one plug-in can be
in use at any time.

Page 3 of 10 MIFARE Decoder  2011-2018 Dot Origin Ltd

Some plug-ins may require that Read-a-Card is licensed for the plug-ins to function;
others may require specific configuration data. If a plug-in is unable to work for either
of these reasons, it will appear in the drop-down list “greyed out”.

Clicking on the help icon (?) next to the format drop-down box will pop-up a
information dialog which indicates the current selected plug-in format name, version,
format name and other features.

Plug-in configuration
Read-a-Card format plug-ins may be configured by using a Windows configuration
file.

In the case of the MIFARE Sector Decoder plug-in, this file is named
“RACFormatDecodeA.ini”. This ini file should be located in the same folder as the
Read-a-Card ini file:

On Windows XP/2000:

C:\Documents and Settings\All Users\Application Data\Read-a-Card\

On Windows Vista/Windows 7/Windows 8 :

C:\ProgramData\Read-a-Card\

In order for this plug-in to work, this file must at least contain the following:

[Config]
ReadFromIniFile=1
PluginVersion=1.2
PluginName=MIFARE Sector Decode

For a complete example configuration file, see the end of this document.

Plug-in name

The Read-a-Card format name displayed in the Card ID source drop-down box can
optionally be configured in the ini file as follows:

[Config]
FormatUIName=My name for this plug-in

(note that there must only be one [Config] section in the ini file).

Read sector data configuration

For each of the main card types, a unique ini file section name is used to configure
how data is to be read from the card. This allows different card types to have
different data locations, keys and format conversion.

Page 4 of 10 MIFARE Decoder  2011-2018 Dot Origin Ltd

The following sections are recognised:
[MIFARE_1K]
[MIFARE_4K]
[MIFARE_UL]

The MIFARE_UL type covers MIFARE Ultralight, Ultralight C, NTAG203 and other
similar related card types.

Note that not all readers support reading data from Ultralight family cards beyond the
first 64 bytes.

For example, with a MIFARE 1K card the following options might be used:

[MIFARE_1K]
ReadData=1 ; Set this to 1 to read sector data from this card type
StartSector=0 ; Integer. The sector to start reading from.
StartBlock=1 ; Integer. The block to start reading from.
StartOffset=0 ; Integer. The byte offset within the block to start reading at
BytesToRead=8 ; Integer. Number of bytes to read
OutputFormat=0 ; Integer. How to format the resulting data (see below)
KeyType=1 ; Integer: 0 = ASCII String, 1 = Binary data as ASCII hex pairs
KeyA=1A2B3C4D5E6F ; Optional KeyA
KeyB=FFFFFFFFFFFF ; Optional KeyB

To enable the reading of a configured file or block/s the ReadData option must be
set to 1 for every card type. If this option is not set for the appropriate card type, the
card’s serial number (UID) will be returned.

The memory in a MIFARE 1K or 4K card is organized in numbered sectors. Each
sector contains 4 or 16 blocks (depending on card type and sector number) and
every block contains 16 bytes of data.

Examples:
StartSector=3
StartBlock=1

The above configuration will start reading from sector 3, block 1 (effectively this is
block number 13).

Any combination of sector and block numbering can be used. For example:
StartSector=
StartBlock=13

The above configuration will read the same block as the previous example.

Page 5 of 10 MIFARE Decoder  2011-2018 Dot Origin Ltd

A block of memory in a MIFARE 1K or 4K card contains 16 bytes of data (bytes
numbered 0 to 15). The plug-in can be configured to start a read from a certain byte
number within that block by configuring the StartOffset.

By contrast, the memory of MIFARE Ultralight family cards is arranged in blocks of 4
bytes.

Reading data that runs over multiple sectors and/or blocks will be automatically
handled (e.g. BytesToRead may be greater than 16).

The resulting bytes will be formatted according to the OutputFormat value. This
provides the same formatting options for formatting the sector data (or UID) that
Read-a-Card offers for formatting the UID. It can have the following values:

0 Decimal reversed (default)
This option takes the last 4 bytes of data (or all bytes if fewer than 4 have been
read) and interprets them as a little-endian binary 32 bit number (i.e. the last byte
in the sequence has the most significant value). The resulting 32 bit value is
formatted as a 10 digit decimal number.

1 Decimal
This option takes the first 4 bytes of data (or all bytes if fewer than 4 have been
read) and interprets them as a big-endian binary 32 bit number (i.e. the first byte
in the sequence has the most significant value). The resulting 32 bit value is
formatted as a 10 digit decimal number.

2 Hex reversed
This option outputs all bytes of the data in hexadecimal (two ASCII numeric or
uppercase hex characters per byte) in reverse order.

3 Hex standard
This option outputs all bytes of the data in hexadecimal (two ASCII numeric or
uppercase hex characters per byte) in the same order that they were read.

4 Decimal 64 bit
This option takes the first 8 bytes of data (or all bytes if fewer than 8 have been
read) and interprets them as a little-endian binary 64 bit number (i.e. the last byte
in the sequence has the most significant value). The resulting 64 bit value is
formatted as a decimal number with no leading zeros.

5 Decimal 64 bit reversed
This option takes the last 8 bytes of data (or all bytes if fewer than 8 have been
read) and interprets them as a big-endian binary 64 bit number (i.e. the first byte
in the sequence has the most significant value). The resulting 64 bit value is
formatted as a decimal number with no leading zeros.

Page 6 of 10 MIFARE Decoder  2011-2018 Dot Origin Ltd

6 ASCII
This option outputs all bytes of data as ASCII printable characters. Any byte
values that do not represent ASCII printable characters will be output as a ‘.’
character.

MIFARE access keys

With MIFARE 1K and 4K cards, access to a sector’s data may require one or two
authentication keys. These keys (KeyA and KeyB) can be configured for each card
type. The keys can be expressed as either an ASCII character string or as a binary
value hex pairs indicated by the KeyType setting:

0 = ASCII String e.g. my key
1 = Binary data as ASCII hex pairs e.g. 6d79206b6579

For example:

KeyType=0
KeyA=my key

Or

KeyType=1
KeyA=6d79206b6579

If they are required, the KeyType KeyA and KeyB options should be specified under
the appropriate section for the card type that they are to be used with (thereby
allowing different keys to be used with different card types).

Securing your access keys

It may not be appropriate to expose the access keys for your cards in a plaintext
configuration file. For this reason, we can supply an encrypted, secured copy of your
configuration file on a smart card security module (or “SAM”). When configured and
licensed in this manner, the Read-a-Card MIFARE Sector Decoder plug-in will read
all of its configuration data, including the access keys, from the SAM in a secure
manner.

Please contact Dot Origin or your supplier for more information on how to obtain a
SAM containing your specific configuration options.

Decoding facility codes and card numbers

In some cases, it may be required to extract a facility code and card number from the
bytes read from the card’s memory. This plug-in provides a number of ways of doing
this. The facility code and card number can then be output as required using Read-a-
Card’s advanced keyboard format or URL/HTTP/command actions. If these features
are used, the resulting ID (as shown on Read-a-Card’s status tab or inserted using

Page 7 of 10 MIFARE Decoder  2011-2018 Dot Origin Ltd

the %n option in the various Read-a-Card actions) will comprise the facility code
followed by the card number.

As with most of the options, different options can be applied to each card types.

DigitMask

A DigitMask value can be used to indicate how the digits of the result of the
OutputFormat process should be distributed between the facility code and card ID.
For example:

DigitMask=xxfff-cccccx

The DigitMask is applied to the result of formatting the data according to the
OutputFormat value. Only f (facility code) and c (card number) characters in the digit
mask have any meaning. Any other characters indicate that the corresponding digit
is to be ignored.

So, for example, with the above DigitMask setting specified, if the result of reading
and formatting the data is the value “123456789012”, the resulting facility code will
be 345 and the resulting card number will be 78901.

The following options allow the facility code and/or card number to be formatted with
leading zeros:
FACDigits=4
CardNumDigits=7

Using the above example, these options would yield a facility code of 0345 and a
card number of 0078901. The resulting ID (combined facility code and card number)
would be 03450078901.

BitMask

More complex bitwise facility code and card number decoding can be performed with
the BitMask option. Note that the BitMask and DigitMask options cannot be used
together for a given card type (if both are specified then only the DigitMask option
will be used).

BitMask=-----pffffffffffffffcccccccccccccccccccp--------
ByteOrder=0
BitOrder=0

The BitMask value is applied bitwise to the binary data read from the card, only
characters c and f are used to indicate bits to be assigned to the card number or
facility code respectively. All other characters indicate a bit to be ignored.

The OutputFormat option is not used in this case. Instead the bytes read from the
card are first converted into a 64 bit integer value. The ByteOrder option determines

Page 8 of 10 MIFARE Decoder  2011-2018 Dot Origin Ltd

whether the first or last byte should be considered the most significant (0=first byte is
most significant, 1=first byte is least significant).

The BitOrder value may then used to reverse the order of the bits in the resulting
facility code and card number.

BitOrder=0 implies that the leftmost character of the BitMask is matched to the most
significant bit of the data.

BitOrder=1 implies that the rightmost character of the BitMask is applied to the least
significant bit of the data and that the bit order is reversed (i.e. the least significant bit
is treated as the most significant in the resulting facility code and card number)

So for example, reading 6 bytes of data with the following setting:

BytesToRead=6

The following six bytes of data are read from the card’s memory:
C6 8B 06 92 48 14

ByteOrder=1 will reverse the byte order resulting in a 64 bit hex value of

144892068BC6

In binary this is:
0001 0100 0100 1000 1001 0010 0000 0110 1000 1011 1100 0110

Matching this to a BitMask and BitOrder as follows:
BitMask=-----pffffffffffffffcccccccccccccccccccp
BitOrder=0

We get:
000101000100100010010010000001101000101111000110
-----pffffffffffffffcccccccccccccccccccp

Facility code =00010010001001b = 489h = 1161 (decimal)

Card number = 0010000001101000101b = 10345h = 66373 (decimal)

The following options allow the facility code and/or card number to be formatted with
leading zeros:
FACDigits=4
CardNumDigits=6

So using the above values the resulting facility code would be 0489, the card number
would be 066373 and the overall combined ID would be 0489066373.

Page 9 of 10 MIFARE Decoder  2011-2018 Dot Origin Ltd

As another example, consider the following BitMask with BitOrder=1 used on the
same data:
BitMask=pcccccccccccccccccccffffffffffffffp
BitOrder=1
ByteOrder=1

In this case we would get the following match:

000101000100100010010010000001101000101111000110

 pcccccccccccccccccccffffffffffffffp

Note that the BitMask is right-aligned with the data due to BitOrder=1. This option also reverses the bit
order giving:

Facility code =11000111101000b = 31E8h = 12776 (decimal)

Card number = 1011000000100100100b = 58124h = 360740 (decimal)

In this case the FACDigits=4 and CardNumDigits=6 options will not cause any
additional leading zeros to be added because the values are already contain at least
this number of digits.

The resulting combined ID will be 12776360740.

Fixed facility codes

A fixed facility code for all cards of a particular type can be configured by specifying
the following setting:

FAC=123 ; (String. The fixed facility code)

Read-a-Card actions

You can dictate which Read-a-Card actions are taken (depending on the type of
card) using the ActionMask setting. This allows the plug-in settings for a card type to
suppress actions settings that would otherwise be enable by Read-a-Card’s
configuration settings.

ActionMask=00 (Hex pair e.g. “7E” for Action Mask 0111 1110)

The following is the bitwise representation of the Action Mask:

Action Mask:
X X X X X X X X
7 6 5 4 3 2 1 0
Bit 7 = Not Used
Bit 6 = Log Action 0 = Enable, 1 = Disable
Bit 5 = URL/HTTP Action 0 = Enable, 1 = Disable
Bit 4 = Command Action 0 = Enable, 1 = Disable
Bit 3 = Sound Action 0 = Enable, 1 = Disable

Page 10 of 10 MIFARE Decoder  2011-2018 Dot Origin Ltd

Bit 2 = Clipboard Action 0 = Enable, 1 = Disable
Bit 1 = Keyboard Action 0 = Enable, 1 = Disable
Bit 0 = Not used

Example configuration file
; Here is example content for the RACFormatDecodeA.ini configuration file:
[Config]
ReadFromIniFile=1
PluginVersion=1.2
PluginName=MIFARE Sector Decode
FormatUIName=ACME Ltd Card Format

[MIFARE_1K]
ReadData=1
StartSector=0
StartBlock=1
StartOffset=4
OutputFormat=3
BytesToRead=8
FormatName=MIFARE 1K (sector decode)
ByteOrder=1
BitOrder=0
DigitMask=fffccccc
FACDigits=3
CardNumDigits=5

[MIFARE_4K]
ReadData=1
StartSector=0
StartBlock=1
BytesToRead=16
FormatName=MIFARE 4K (sector decode)
ByteOrder=1
BitOrder=0
BitMask=------ffffffffffffffcccccccccccccccccccp--------
FACDigits=4
CardNumDigits=6
KeyType=1
KeyA=123456789abc
KeyB=FFFFFFFFFFFF

[MIFARE_UL]
ReadData=1
StartBlock=4
BytesToRead=4
FormatName=MIFARE Ultralight (sector decode)

	Overview
	Read-a-Card and plug-in DLLs
	Plug-in configuration
	Plug-in name
	Read sector data configuration
	MIFARE access keys
	Securing your access keys

	Decoding facility codes and card numbers
	DigitMask
	BitMask
	Fixed facility codes

	Read-a-Card actions

	Example configuration file

